Microrheology of human lung epithelial cells measured by atomic force microscopy.
نویسندگان
چکیده
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.
منابع مشابه
Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy.
Restoration of lung homeostasis following injury requires efficient wound healing by the epithelium. The mechanisms of lung epithelial wound healing include cell spreading and migration into the wounded area and later cell proliferation. We hypothesized that mechanical properties of cells vary near the wound edge, and this may provide cues to direct cell migration. To investigate this hypothesi...
متن کاملEvaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)
Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...
متن کاملAtomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines
Mechanical phenotyping of cells by atomic force microscopy (AFM) was proposed as a novel tool in cancer cell research as cancer cells undergo massive structural changes, comprising remodelling of the cytoskeleton and changes of their adhesive properties. In this work, we focused on the mechanical properties of human breast cell lines with different metastatic potential by AFM-based microrheolog...
متن کاملSubcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy.
The nanostructures and hydrophobic properties of cancer cell membranes are important for membrane fusion and cell adhesion. They are directly related to cancer cell biophysical properties, including aggressive growth and migration. Additionally, chemical component analysis of the cancer cell membrane could potentially be applied in clinical diagnosis of cancer by identification of specific biom...
متن کاملCytoskeleton remodelling of confluent epithelial cells cultured on porous substrates.
The impact of substrate topography on the morphological and mechanical properties of confluent MDCK-II cells cultured on porous substrates was scrutinized by means of various imaging techniques as well as atomic force microscopy comprising force volume and microrheology measurements. Regardless of the pore size, ranging from 450 to 5500 nm in diameter, cells were able to span the pores. They di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 84 3 شماره
صفحات -
تاریخ انتشار 2003